Structure of liquid ethylene glycol: A molecular dynamics simulation study with different force fields

نویسندگان

  • L. Saiz
  • J. A. Padró
  • E. Guàrdia
چکیده

The structure of liquid ethylene glycol at room temperature is examined by performing molecular dynamics ~MD! simulation studies for several different liquid phase force fields. We compare the properties obtained and analyze the differences which arise from the use of these models. A thorough study of molecular conformation and intermolecular structure for the different potential models is carried out given that three of the studied force fields have the same intermolecular parameters and different intramolecular interactions. In addition, the effect of molecular shape on the intermolecular structure is discussed. Due to the important role played by the highly directional forces occurring in hydrogen bonded systems, in their intermolecular structure and in the macroscopic properties of the system, we pay special attention to the analysis of the features of the hydrogen bonding patterns present in the liquid. Revealing an overall agreement with the available structural experimental data, the results obtained show that, for the simulated models, the intermolecular structure is rather similar. The dynamics of the system is studied through the self-diffusion coefficients and, in contrast to the structural properties, the results obtained for the distinct models are quite different. © 2001 American Institute of Physics. @DOI: 10.1063/1.1340605#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rheological Behavior of Water-Ethylene Glycol Based Graphene Oxide Nanofluids

Traditionally water-ethylene glycol mixture based nanofluids are used in cold regions as a coolant in the car radiators. In the present study, the rheological properties of water-ethylene glycol based graphene oxide nanofluid are studied using Non-Equilibrium Molecular Dynamics (NEMD) method at different temperatures, volume concentrations, and shear rates. NEMD simulations are perfor...

متن کامل

Molecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)

In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...

متن کامل

Estimation of the Elastic Properties of Important Calcium Silicate Hydrates in Nano Scale - a Molecular Dynamics Approach

Approximately, 50 to 70 percent of hydration products in hydrated cement paste are polymorphisms of C-S-H gel. It is highly influential in the final properties of hardened cement paste. Distinguishing C-S-H nano-structure significantly leads to determine its macro scale ensemble properties. This paper is dealt with nano-scale modeling. To achieve this, the most important C-S-H compounds, with a...

متن کامل

Investigation of Different Solvents and Temperatures Effects on (3,7) Single-Walled Carbon Nanotubes: DFT Study

In this research, we have studied the structural propenies of water. methanol and ethanol surrounding snidewalledcarbon nanotube (SWCNT) and mixed of them either and we have investigated the solvent effects onthe relative energies and dipole moment values by ming molecular dynamics simulation. We used differentforce field it, deterrnaned energy and other type of geometrical parameters, on the p...

متن کامل

Non-Equilibruim Molecular Dynamics Simulation of Poiseuille Flow in a Nanochannel

The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001